Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 131
Filtrar
1.
J Pept Sci ; : e3605, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38660732

RESUMO

On December 12th, 2023, the European Commission took regulatory action to amend Annex XVII of REACH, imposing restrictions on the use of N,N-dimethylformamide (DMF) within the EU market owing to its high toxicity. Historically, DMF has been widely considered the gold standard for solid-phase peptide synthesis (SPPS). Being urgent to propose alternative solvents, we tested the suitability of non-hazardous neat and mixed solvents. Notably, binary solvent mixtures containing dimethyl sulfoxide as one of the solvent partners demonstrated high efficacy in solubilizing reagents while maintaining the desired swelling characteristics of common resins. A series of binary solvent mixtures were tested in automated SPPS, both at room temperature and high temperature, employing the PurePep® Chorus synthesizer, which enabled controlled induction heating between 25 and 90°C with oscillation mixing. The performances were assessed in challenging peptide sequences, i.e., ACP (65-74), and in longer and aggregating sequences like SARS-CoV-2 RBM (436-507) and ß-amyloid (1-42). Furthermore, as part of the proposed sustainable approach to minimize the utilization of hazardous solvents, we coupled the novel PurePep EasyClean catch-and-release purification technology. This work, addressing regulatory compliance, emphasizes the crucial role of green chemistry in advancing safer and more environmentally friendly practices in SPPS.

2.
J Med Chem ; 67(6): 5053-5063, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38470817

RESUMO

The rising demand for novel cosmeceutical ingredients has highlighted peptides as a significant category. Based on the collagen turnover modulation properties of SA1-III, a decapeptide derived from a serine protease inhibitor (serpin A1), this study focused on designing shorter, second-generation peptides endowed with improved properties. A tetrapeptide candidate was further modified employing the retro-inverso approach that uses d-amino acids aiming to enhance peptide stability against dermal enzymes. Surprisingly, the modified peptide AAT11RI displayed notably high activity in vitro, as compared to its precursors, and suggested a mode of action based on the inhibition of collagen degradation. It is worth noting that AAT11RI showcases stability against dermal enzymes contained in human skin homogenates due to its rationally designed structure that hampers recognition by most proteases. The rational approach we embraced in this study underscored the added value of substantiated claims in the design of new cosmeceutical ingredients, representing a rarity in the field.


Assuntos
Cosmecêuticos , alfa 1-Antitripsina , Humanos , alfa 1-Antitripsina/química , alfa 1-Antitripsina/farmacologia , Peptídeos/farmacologia , Peptídeos/química , Colágeno , Adjuvantes Imunológicos
3.
J Pept Sci ; 30(2): e3543, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37734745

RESUMO

The standard GAFF2 force field parameterization has been refined for the fluorinated alcohols 2,2,2-trifluoroethanol (TFE), 1,1,1,3,3,3-hexafluoro-2-propanol (HFIP), and 1,1,1,3,3,3-hexafluoropropan-2-one (HFA), which are commonly used to study proteins and peptides in biomimetic media. The structural and dynamic properties of both proteins and peptides are significantly influenced by the biomimetic environment created by the presence of these cosolvents in aqueous solutions. Quantum mechanical calculations on stable conformers were used to parameterize the atomic charges. Different systems, such as pure liquids, aqueous solutions, and systems formed by melittin protein and cosolvent/water solutions, have been used to validate the new models. The calculated macroscopic and structural properties are in agreement with experimental findings, supporting the validity of the newly proposed models.


Assuntos
Álcoois , Meliteno , Meliteno/química , Solventes/química , Álcoois/química , Peptídeos/química , Proteínas/química , Água/química , Trifluoretanol/química
4.
J Pept Sci ; 30(2): e3541, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37699615

RESUMO

To date, the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) COVID-19 pandemic continues to be a potentially lethal disease. Although both vaccines and specific antiviral drugs have been approved, the search for more specific therapeutic approaches is still ongoing. The infection mechanism of SARS-CoV-2 consists of several stages, and each one can be selectively blocked to disrupt viral infection. Peptides are a promising class of antiviral compounds, which may be suitably modified to be more stable, more effective, and more selective towards a specific viral replication step. The latter two goals might be obtained by increasing the specificity and/or the affinity of the interaction with a specific target and often imply the stabilization of the secondary structure of the active peptide. This review is focused on modified antiviral peptides against SARS-CoV-2 acting at different stages of virus replication, including ACE2-RBD interaction, membrane fusion mechanism, and the proteolytic cleavage by different viral proteases. Therefore, the landscape presented herein provides a useful springboard for the design of new and powerful antiviral therapeutics.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Antivirais/farmacologia , Pandemias , Peptídeos/farmacologia
5.
Expert Opin Ther Pat ; 33(12): 865-873, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38131310

RESUMO

INTRODUCTION: Thymosins are small proteins found mainly in the thymus. They are involved in several biological processes, including immunoregulation, angiogenesis, and anti-inflammatory activity. Due to these multiple activities, thymosins are widely used as therapeutics. In fact, these peptides have shown interesting results in the treatment of eye disorders, anticancer therapy, and dysregulated immune disorders. AREA COVERED: We analyzed the thymosins therapeutic patent landscape describing the most significant patents published after 2018 and originally written in English, classified according to the different type of functions and diseases. We searched 'Thymosin' on Patentscope and Espacenet. EXPERT OPINION: Thymalfasin (Zadaxin) is the only FDA-approved thymosine-based drug used to treat chronic hepatitis B and C and as a chemotherapy inducer. This outcome demonstrates how thymosins can be exploited as therapeutics, especially in immunological and anti-cancer therapies. However, the development of modified thymosins could expand their therapeutic interest and application in different diseases. In fact, by chemical modifications, it is possible to increase proteolytic stability in the biological environment, enhance cell permeability, and stabilize the secondary structure of the peptide. Finally, the development of shorter sequences could reduce the cost and production time of these thymosin-based drugs.


Assuntos
Timosina , Timo , Humanos , Patentes como Assunto , Timosina/farmacologia , Timosina/química , Timosina/metabolismo
6.
J Enzyme Inhib Med Chem ; 38(1): 2254019, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37735942

RESUMO

Oxytocin (OT) is a neurohypophyseal peptide hormone containing a disulphide-bridged pseudocyclic conformation. The biomedical use of OT peptides is limited amongst others by disadvantageous pharmacokinetic parameters. To increase the stability of OT by replacing the disulphide bridge with the stable and more rigid [1,2,3]triazol-1-yl moiety, we employed the Cu2+-catalysed side chain-to-side chain azide-alkyne 1,3-cycloaddition. Here we report the design, synthesis, conformational analysis, and in vitro pharmacological activity of a homologous series of Cα1-to-Cα6 side chain-to-side chain [1,2,3]triazol-1-yl-containing OT analogues differing in the length of the bridge, location, and orientation of the linking moiety. Exploiting this macrocyclisation approach, it was possible to generate a systematic series of compounds providing interesting insight into the structure-conformation-function relationship of OT. Most analogues were able to adopt similar conformation to endogenous OT in water, namely, a type I ß-turn. This approach may in the future generate stabilised pharmacological peptide tools to advance understanding of OT physiology.


Assuntos
Alcinos , Ocitocina , Ocitocina/farmacologia , Azidas , Catálise , Dissulfetos
7.
Virus Res ; 334: 199170, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37422270

RESUMO

Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has posed a great concern in human population. To fight coronavirus emergence, we have dissected the conserved amino acid region of the internal fusion peptide in the S2 subunit of Spike glycoprotein of SARS-CoV-2 to design new inhibitory peptides. Among the 11 overlapping peptides (9-23-mer), PN19, a 19-mer peptide, exhibited a powerful inhibitory activity against different SARS-CoV-2 clinical isolate variants in absence of cytotoxicity. The PN19 inhibitory activity was found to be dependent on conservation of the central Phe and C-terminal Tyr residues in the peptide sequence. Circular dichroism spectra of the active peptide exhibited an alpha-helix propensity, confirmed by secondary structure prediction analysis. The PN19 inhibitory activity, exerted in the first step of virus infection, was reduced after peptide adsorption treatment with virus-cell substrate during fusion interaction. Additionally, PN19 inhibitory activity was reduced by adding S2 membrane-proximal region derived peptides. PN19 showed binding ability to the S2 membrane proximal region derived peptides, confirmed by molecular modelling, playing a role in the mechanism of action. Collectively, these results confirm that the internal fusion peptide region is a good candidate on which develop peptidomimetic anti SARS-CoV-2 antivirals.


Assuntos
COVID-19 , Glicoproteína da Espícula de Coronavírus , Humanos , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/química , SARS-CoV-2/metabolismo , Peptídeos/farmacologia , Peptídeos/metabolismo , Glicoproteínas
8.
ACS Omega ; 8(25): 22665-22672, 2023 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-37387789

RESUMO

Despite the availability of vaccines, COVID-19 continues to be aggressive, especially in immunocompromised individuals. Therefore, the development of a specific therapeutic agent with antiviral activity against SARS-CoV-2 is necessary. The infection pathway starts when the receptor binding domain of the viral spike protein interacts with the angiotensin converting enzyme 2 (ACE2), which acts as a host receptor for the RBD expressed on the host cell surface. In this scenario, ACE2 analogs binding to the RBD and preventing the cell entry can be promising antiviral agents. Most of the ACE2 residues involved in the interaction belong to the α1 helix, more specifically to the minimal fragment ACE2(24-42). In order to increase the stability of the secondary structure and thus antiviral activity, we designed different triazole-stapled analogs, changing the position and the number of bridges. The peptide called P3, which has the triazole-containing bridge in the positions 36-40, showed promising antiviral activity at micromolar concentrations assessed by plaque reduction assay. On the other hand, the double-stapled peptide P4 lost the activity, showing that excessive rigidity disfavors the interaction with the RBD.

9.
J Enzyme Inhib Med Chem ; 38(1): 2193676, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37146256

RESUMO

The development of skin-care products is recently growing. Cosmetic formulas containing active ingredients with proven efficacy, namely cosmeceuticals, are based on various compounds, including peptides. Different whitening agents featuring anti-tyrosinase activity have been applied in the cosmeceutical field. Despite their availability, their applicability is often limited due to several drawbacks including toxicity, lack of stability, and other factors. In this work, we present the inhibitory effect on diphenolase activity of thiosemicarbazone (TSC)-peptide conjugates. Tripeptides FFY, FWY, and FYY were conjugated with three TSCs bearing one or two aromatic rings via amide bond formation in a solid phase. Compounds were then examined as tyrosinase and melanogenesis inhibitors in murine melanoma B16F0 cell line, followed by the cytotoxicity assays of these cells. In silico investigations explained the differences in the activity, observed among tested compounds. Mushroom tyrosinase was inhibited by TSC1-conjugates at micromolar level, with IC50 lower than this for kojic acid, a widely used reference compound. Up to now, this is the first report regarding thiosemicarbazones conjugated with tripeptides, synthesised for the purpose of tyrosinase inhibition.


Assuntos
Agaricales , Cosmecêuticos , Tiossemicarbazonas , Animais , Camundongos , Monofenol Mono-Oxigenase , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/química , Tiossemicarbazonas/farmacologia , Tiossemicarbazonas/química , Melaninas
10.
Expert Opin Ther Pat ; 33(3): 169-178, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36912026

RESUMO

INTRODUCTION: Eradication of malaria remains one of the main aims of medicine. Despite progress in malaria treatment, mortality rate remains high, especially in the poorest parts of the world. Therefore, prevention through vaccines is fundamental and recent approval of the first effective vaccine reinforced this assumption. However, since the parasite cycle is composed of three stages, different types of vaccine targeting stage-specific antigens shall be developed. Moreover, the beneficial effect on vaccinated subjects can be tuned using compositions targeting different stages. AREA COVERED: We analyzed the malaria vaccine patent landscape describing the most significant patents published after 2016, classified according to the different parasite stages targeted focusing on selected protein antigens or epitopes. We searched 'malaria vaccine' on Patentscope and Espacenet. EXPERT OPINION: Pre-erythrocytic vaccines were boosted by RTS,S approval, but its partial efficacy, limited to sporozoites, calls for compositions active against other disease stages. In particular, multi-antigen vaccines could be more effective than single-stage ones, as they would activate an immune response similar to that acquired in endemic regions. Furthermore, vaccine storage is another factor to be considered given the climate of the areas where malaria is widespread. More advanced technologies can lead to more effective and safer vaccines.


Assuntos
Vacinas Antimaláricas , Malária Falciparum , Malária , Humanos , Patentes como Assunto , Malária/prevenção & controle , Malária Falciparum/parasitologia , Malária Falciparum/prevenção & controle , Plasmodium falciparum
11.
Chembiochem ; 24(12): e202200741, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-36892535

RESUMO

Post-translational modifications affect protein biology under physiological and pathological conditions. Efficient methods for the preparation of peptides and proteins carrying defined, homogeneous modifications are fundamental tools for investigating these functions. In the case of mucin 1 (MUC1), an altered glycosylation pattern is observed in carcinogenesis. To better understand the role of MUC1 glycosylation in the interactions and adhesion of cancer cells, we prepared a panel of homogeneously O-glycosylated MUC1 peptides by using a quantitative chemoenzymatic approach. Cell-adhesion experiments with MCF-7 cancer cells on surfaces carrying up to six differently glycosylated MUC1 peptides demonstrated that different glycans have a significant impact on adhesion. This finding suggests a distinct role for MUC1 glycosylation patterns in cancer cell migration and/or invasion. To decipher the molecular mechanism for the observed adhesion, we investigated the conformation of the glycosylated MUC1 peptides by NMR spectroscopy. These experiments revealed only minor differences in peptide structure, therefore clearly relating the adhesion behaviour to the type and number of glycans linked to MUC1.


Assuntos
Glicopeptídeos , Mucina-1 , Mucina-1/química , Glicopeptídeos/química , Glicosilação , Adesão Celular , Peptídeos/química , Proteínas/metabolismo , Polissacarídeos
12.
J Pept Sci ; 29(7): e3475, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36597597

RESUMO

Multiple sclerosis (MS) is an inflammatory and autoimmune disorder, in which an antibody-mediated demyelination mechanism plays a critical role. We prepared two glucosylated peptides derived from the human myelin proteins, that is, oligodendrocyte-myelin glycoprotein (OMGp) and reticulon-4 receptor (RTN4R), selected by a bioinformatic approach for their conformational homology with CSF114(Glc), a designed ß-turn antigenic probe derived from myelin oligodendrocyte glycoprotein (MOG), a glycoprotein present in the CNS. This synthetic antigen is specifically recognized by antibodies in sera of MS patients. We report herein the antigenic properties of these peptides, showing, on the one hand, that MS patient antibodies recognize the two glucosylated peptides and, on the other hand, that these antibodies cross-react with CSF114(Glc) and with the previously described hyperglucosylated nontypeable Haemophilus influenzae bacterial adhesin protein HMW1ct(Glc). These observations point to an immunological association between human and bacterial protein antigens, underpinning the hypothesis that molecular mimicry triggers the breakdown of self-tolerance in MS and suggesting that RTN4R and OMGp can be considered as autoantigens.


Assuntos
Esclerose Múltipla , Humanos , Autoantígenos , Adesinas Bacterianas , Bainha de Mielina/metabolismo , Haemophilus influenzae , Autoanticorpos , Proteínas da Mielina , Peptídeos , Glicoproteína Mielina-Oligodendrócito
13.
Int J Mol Sci ; 24(2)2023 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-36674467

RESUMO

This study illustrates the sensing and wound healing properties of silk fibroin in combination with peptide patterns, with an emphasis on the printability of multilayered grids, and envisions possible applications of these next-generation silk-based materials. Functionalized silk fibers covalently linked to an arginine-glycine-aspartic acid (RGD) peptide create a platform for preparing a biomaterial ink for 3D printing of grid-like piezoresistors with wound-healing and sensing properties. The culture medium obtained from 3D-printed silk fibroin enriched with RGD peptide improves cell adhesion, accelerating skin repair. Specifically, RGD peptide-modified silk fibroin demonstrated biocompatibility, enhanced cell adhesion, and higher wound closure rates at lower concentration than the neat peptide. It was also shown that the printing of peptide-modified silk fibroin produces a piezoresistive transducer that is the active component of a sensor based on a Schottky diode harmonic transponder encoding information about pressure. We discovered that such biomaterial ink printed in a multilayered grid can be used as a humidity sensor. Furthermore, humidity activates a transition between low and high conductivity states in this medium that is retained unless a negative voltage is applied, paving the way for utilization in non-volatile organic memory devices. Globally, these results pave the way for promising applications, such as monitoring parameters such as human wound care and being integrated in bio-implantable processors.


Assuntos
Fibroínas , Materiais Inteligentes , Humanos , Seda/química , Fibroínas/química , Tinta , Materiais Biocompatíveis/química , Cicatrização , Peptídeos , Impressão Tridimensional
14.
Clin Cosmet Investig Dermatol ; 15: 2693-2703, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36540724

RESUMO

A substantial reduction in the amount and quality of collagen leads to age-related deterioration of the elasticity and firmness of the skin. In recent years, multiple compounds have been developed aimed at reversing the molecular features of dermal aging. One such target for aging reversal is collagen degradation or turnover. SA1-III is a decapeptide (Ac-Met-Gly-Lys-Val-Val-Asn-Pro-Thr-Gln-Lys-NH2), also known as KP1, formally derived from the C-terminal portion of serpin A1, an agent known as a physiological inhibitor of neutrophil elastase, and has been the subject of laboratory and clinical studies determining its effects on modulation of collagen turnover as well as the treatment of age-associated changes of the face. This review aims to provide a bio-inspired approach focusing on the latest scientific studies that describe the compound, as well as a comprehensive appraisal of laboratory and clinical tests on skincare formulations enriched with sA1-III.

15.
Front Pharmacol ; 13: 942178, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36034864

RESUMO

The peptide hormone relaxin (RLX), also available as clinical-grade recombinant protein (serelaxin), holds great promise as a cardiovascular and anti-fibrotic agent but is limited by the pharmacokinetic issues common to all peptide drugs. In this study, by a computational modelling chemistry approach, we have synthesized and tested a set of low molecular weight peptides based on the putative receptor-binding domain of the B chain of human H1 RLX isoform, with the objective to obtain RLX analogues with improved pharmacokinetic features. Some of them were stabilized to induce the appropriate 3-D conformation by intra-chain tri-azolic staples, which should theoretically enhance their resistance to digestive enzymes making them suited for oral administration. Despite these favourable premises, none of these H1 peptides, either linear or stapled, revealed a sufficient affinity to the specific RLX receptor RXFP1. Moreover, none of them was endowed with any RLX-like biological effects in RXFP1-expressing THP-1 human monocytic cells and mouse NIH-3T3-derived myofibroblasts in in vitro culture, in terms of significantly relevant cAMP elevation and ERK1/2 phosphorylation, which represent two major signal transduction events downstream RXFP1 activation. This was at variance with authentic serelaxin, which induced a clear-cut, significant activation of both these classical RLX signaling pathways. Albeit negative, the results of this study offer additional information about the structural requirements that new peptide therapeutics shall possess to effectively behave as RXFP1 agonists and RLX analogues.

17.
Front Chem ; 10: 885180, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35795217

RESUMO

The involvement of Myelin Basic Protein (MBP) in Multiple Sclerosis (MS) has been widely discussed in the literature. This intrinsically disordered protein has an interesting α-helix motif, which can be considered as a conformational epitope. In this work we investigate the importance of the helical structure in antibody recognition by MBP peptides of different lengths. Firstly, we synthesized the peptide MBP (81-106) (1) and observed that its elongation at both N- and C-termini, to obtain the peptide MBP (76-116) (2) improves IgM antibody recognition in SP-ELISA, but destabilizes the helical structure. Conversely, in competitive ELISA, MBP (81-106) (1) is recognized more efficiently by IgM antibodies than MBP (76-116) (2), possibly thanks to its more stable helical structure observed in CD and NMR conformational experiments. These results are discussed in terms of different performances of peptide antigens in the two ELISA formats tested.

18.
Molecules ; 27(14)2022 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-35889483

RESUMO

The combination of pharmacologic and endoscopic therapies is the gold standard for treating intestinal failures. The possibility of chemical solubility in water is mandatory for intelligent capsules. Functionalised silk fibroin with peptides and covalently linking different molecular entities to its structure make this protein a platform for preparing gels dissolving in the small and large intestine for drug delivery. In the present study, we linked a peptide containing the cell-adhesive motif Arginine-Glycine-Aspartic acid (RGD) to degummed silk fibres (DSF). Regenerated silk fibroin (RS) films obtained by dissolving functionalised DSF in formic acid were used to prepare composite gelatin. We show that such composite gelatin remains stable and elastic in the simulated gastric fluid (SGF) but can dissolve in the small and large intestines' neutral-pH simulated intestine fluid (SIF). These findings open up the possibility of designing microfabricated and physically programmable scaffolds that locally promote tissue regeneration, thanks to bio-enabled materials based on functionalised regenerated silk.


Assuntos
Fibroínas , Seda , Fibroínas/química , Gelatina/química , Peptídeos , Seda/química , Tecidos Suporte/química , Água/química
19.
Front Immunol ; 13: 879946, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35693806

RESUMO

The currently devastating pandemic of severe acute respiratory syndrome known as coronavirus disease 2019 or COVID-19 is caused by the coronavirus SARS-CoV-2. Both the virus and the disease have been extensively studied worldwide. A trimeric spike (S) protein expressed on the virus outer bilayer leaflet has been identified as a ligand that allows the virus to penetrate human host cells and cause infection. Its receptor-binding domain (RBD) interacts with the angiotensin-converting enzyme 2 (ACE2), the host-cell viral receptor, and is, therefore, the subject of intense research for the development of virus control means, particularly vaccines. In this work, we search for smaller fragments of the S protein able to elicit virus-neutralizing antibodies, suitable for production by peptide synthesis technology. Based on the analysis of available data, we selected a 72 aa long receptor binding motif (RBM436-507) of RBD. We used ELISA to study the antibody response to each of the three antigens (S protein, its RBD domain and the RBM436-507 synthetic peptide) in humans exposed to the infection and in immunized mice. The seroreactivity analysis showed that anti-RBM antibodies are produced in COVID-19 patients and immunized mice and may exert neutralizing function, although with a frequency lower than anti-S and -RBD. These results provide a basis for further studies towards the development of vaccines or treatments focused on specific regions of the S virus protein, which can benefit from the absence of folding problems, conformational constraints and other advantages of the peptide synthesis production.


Assuntos
COVID-19 , SARS-CoV-2 , Animais , Anticorpos Antivirais , Humanos , Camundongos , Peptídeos , Glicoproteína da Espícula de Coronavírus
20.
Front Immunol ; 13: 856033, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35585976

RESUMO

Despite the global interest and the unprecedented number of scientific studies triggered by the COVID-19 pandemic, few data are available from developing and low-income countries. In these regions, communities live under the threat of various transmissible diseases aside from COVID-19, including malaria. This study aims to determine the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) seroreactivity of antibodies from COVID-19 and pre-COVID-19 samples of individuals in Mali (West Africa). Blood samples from COVID-19 patients (n = 266) at Bamako Dermatology Hospital (HDB) and pre-COVID-19 donors (n = 283) from a previous malaria survey conducted in Dangassa village were tested by ELISA to assess IgG antibodies specific to the full-length spike (S) protein, the receptor-binding domain (RBD), and the receptor-binding motif (RBM436-507). Study participants were categorized by age, gender, treatment duration for COVID-19, and comorbidities. In addition, the cross-seroreactivity of samples from pre-COVID-19, malaria-positive patients against the three antigens was assessed. Recognition of the SARS-CoV-2 proteins by sera from COVID-19 patients was 80.5% for S, 71.1% for RBD, and 31.9% for RBM (p < 0.001). While antibody responses to S and RBD tended to be age-dependent, responses to RBM were not. Responses were not gender-dependent for any of the antigens. Higher antibody levels to S, RBD, and RBM at hospital entry were associated with shorter treatment durations, particularly for RBD (p < 0.01). In contrast, higher body weights negatively influenced the anti-S antibody response, and asthma and diabetes weakened the anti-RBM antibody responses. Although lower, a significant cross-reactive antibody response to S (21.9%), RBD (6.7%), and RBM (8.8%) was detected in the pre-COVID-19 and malaria samples. Cross-reactive antibody responses to RBM were mostly associated (p < 0.01) with the absence of current Plasmodium falciparum infection, warranting further study.


Assuntos
COVID-19 , Malária , Anticorpos Antivirais , Humanos , Malária/epidemiologia , Mali , Pandemias , SARS-CoV-2
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...